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Abstract 

LetX=(xij)nxn be the generic matrix of the quantum group K[GL,(n)]. First we prove that X 

satisfies two quantum characteristic equations, both become the classical characteristic equation 
when q = 1. Second we prove a quantum version of Muir’s formula for X. @ Elsevier Science 
B.V. All rights reserved. 

AMS ClassiJcation: 15A24, 17B37 

1. Definitions and basic properties 

Let K be a field and let q be a nonzero element in K. The quantum group K[GL,(n)] 
is a deformation of the Hopf algebra K[GL(n)]; as an algebra, it is defined by 

K[G-&(n)l =K[&(n)l[D-‘l and KW,(n)l =K(Xij)/(Rq) 

where K(xij) is the free algebra generated by {xiii i, j = 1,. . . , n} and (I$) is the ideal 

generated by the following quadratic relations: 

xjrxit = 4xitxjt for all i < j and t, 

XitXis =qxisxit for all s < t and i, 

XitXjs =Xj,Xit foralli<jands<t, 

XisXjt - XjtXis = (4 - 4-l )xitxi, for all i < j and s < t. 
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The relation vector space R, has dimension irr’(n’ - 1) as in the classical case (q = 1). 

The basic properties of K[GL,(n)] can be found in [l]. The quantum determinant, 

denoted by D, is 

D= c (-q)-@‘$t)t . . ‘x,(n), = c (-q)-‘(%,(,j. . .x,,(n) 

0E.T” UES. 

where S,, is the nth symmetric group, Z(il , . . . , i,) is the number of inversions of the 

sequence (iI,. . . , i,) and Z(o)=Z(o(l),..., a(n)). The coalgebra structure of K[M,(n)] 

and K[GL,(n)] is determined by the following rules: 

A(xij)= 2 Xik @%j for all i and j, 
k=l 

&(Xij) = 6, for all i and j, 

where 6ij is the Kronecker delta. The matrix X = (Xii),,, is called the generic matrix 

of K[M,(n)] and K[GL,(n)]. If q # 1, the entries of X are noncommutative. 

The left and right quantum minors (or sub-determinants) and left and right quantum 

sub-permanents play a key role in this paper. Let (iI,. . . , i,) and (jt , . . . j,) be two 

sequences of integers between 1 and n. Here neither (il,. . . , i,) nor (jt, . . . , j,) needs 

to be increasing. The left and right quantum minors Dl(i,l j,) and D,(i,[ j,) are 

D,(i,l js) = c (-q)-‘(iu(s))+‘(is)xi.(l,il . . .xircmJm. 

The left and right quantum sub-permanents I+(& 1 j,) and P,(i, 1 j,) are 

P,(i,l j,) = C q’(i”(“))-‘(is)xi~,,,j, . . . xircmJ,. 

The following properties of quantum minors and quantum sub-permanents can be 

found in [l], which can be proved easily by using corepresentations of K[M,(n)]. 

(Pl . 1) Given a positive integer m 5 n, let @,, denote the set 

% = {(it ,...,i,)]l 5 il < f.. <i, 5 n}. 

If (is) and (j,) are in a,,,, then Dl(i,l j,) = D,(i,l j,); in this case, it is called quantum 

minor and denoted by 0(&l j,). Similarly F’l(i,l j,) =P,(i,l j,), and it is called quantum 

sub-permanent and denoted by P(i,l j,). The set @JO has only one element which is the 

empty set 4. We assume that P($] 4) = D(c$[~) = 1 (used in Section 3). By definition, 

P(ilj)=D(ilj)=xij andD(l...n(l...n)=D. The sub-permanentP(l...nll...n) is 
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denoted by P and it is called the quantum permanent of X. In general, P(i,l j,) # 

D(i,jj,) when M > 2. 

(P1.2) A left (resp. right) quantum minor Di(i,lj,) (resp. Dr(isljS)) is equal to zero 

if and only if either is = it for some s < t or j, = j, for some s < t. This statement 

is not true for the quantum sub-permanents. If (i:) (resp. (j:)) is a permutation of a 

nondecreasing sequence (is) (resp. (j,)), then 

and 

(PI .3) Quantum versions of the Laplace expansion hold: 

Dl(il ‘. . i,ljl . . .j,) 

= c (-q)-‘(iuc~,)+‘(is)Dl(il . . .ikljo(l). . .jg@))D,(ik+, . . . imlj@+,). .j ( ,) om > 

oES; 

D,(il ...i,ljl.. .j,) 

P1(i* ‘. . i,lj, . . .j,> 

=c 
qKjoO))-Kb)p,(il . . . 

ikl.hl) . ~j~,k,)pl(~k+l ” .imlja(k+l) . ._/&,I,), 

UESf 

p,(il . . . i,lj, *. .j,) 

where S~={~~S,lo(l)< .s+ <o(k) and ri(k + l)< ... <a(m)} consists of all 

k-shulfles in S,,. 

2. The Cayley-Hamilton theorem 

Let A = (Uij)nxn be an n x IZ matrix over a commutative ring. Then A satisfies the 

classical characteristic equation 

A” - tr,A”-1 +. . + (-l)“-‘tr,_lA + (-1)“det AZ,,, =0 

where the kth trace trk is the sum of all k x k principal minors of A, det A is the 

determinant of A and Znxn is the n x n identity matrix. 
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It is easy to check that if q # 1, the generic matrix X of the quantum group 

K[GL,(n)] does not satisfy the classical characteristic equation. The aim of this section 

is to prove X satisfies two quantum versions of the characteristic equation. We need 

to define quantum trace and other notations. For simplicity, let qij = q if i < j, qii = 1 

if i = j, and qij = q-’ if i > j. For every i, j and m, denote 

bdij) = C Ddi,(&)l (k),j). 
&)E% 

So Tr, is a diagonal n x n-matrix. Let B, denote the n x n-matrix (b,(ij)),xn. The 

following lemma gives some relations between X, B, and Tr,. 

Lemma 2.1. (1) BO=X 

(2) B,_l =(-l)“-‘Tr,, and trn(i)=qn+lpziD. 

(3) B, =0 for all m > n. 

(4) B,=(-l)mXeTr, +X.B,_l for all m= l,...,n - 1. 

(5) B,= ~(-l)m-kXk+l.Tr,_kfor allm=l,...,n-I. 
k=O 

Proof. (1) If m=O, bo(ij)=Dl(il j)=x,, and BO =X. 

(2) By (P1.2), b,_l(i,j)=O for all i#j and b,_l(ii)=(-l)“-‘@,(i), which gives 

that B,_l = (-l)“-‘Tr,. An easy computation shows that tr,(i) = qn+1-2iD. 

(3) By (P1.2), for all m > n, b,(ij)=O and then B, =O. 

(4) By (P1.2) and (P1.3), 

Ddi,(is)lGs),j) = fiC-qji,)xi$ACislisI 

t=1 

and hence 

+ exii,Dl(itil . . . it-l&it+l . . . i,l il . . . it_l~&,+~ . . . i,, j), 
t=1 

hdij) = c Ddi,(&)l(is),j) 

= (-1 )“xij C fi qji,D(i,l is) + f: xii8b,-l(isj). 

(is) E % f=l is=1 

Therefore we obtain B, = (- l)m_Xe Tr, + X B,_l . 

(5) This follows from (4) and straightforward induction. 0 

We are ready to prove the first quantum version of the characteristic equation. 
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Theorem 2.2. The generic matrix X=(X~~),,~~ satisJies the following characteristic 

equation: 

_Jp _Jy’.Trl +. . . + (-l)“-‘X.Tr,_t + (-l)“Tr, =O. 

Proof. By Lemma 2.1(5), 

n-1 

C(-l)“-l-kXk+l Tr,_l_k + (-1)“Tm =B,_l - B,_l =O. 0 

k=O 

By definition, only when q = 1, Trk become the classical kth trace function of X. 

In Theorem 2.2, we use the ordinary powers of X and quantum traces Trk. Next we 

will prove another quantum version of characteristic equation by using ordinary trace 

functions trk and quantum powers of X Let Y = (_Yij)nxn be an n x n matrix over 

K[GL,(n)]. The q-multiplication of X and Y is defined by 

q(x ’ Y> = (q(x ’ Y)ijhxn and q(x. Y)jj = 2 xikqkjykj- 

k=l 

It is easy to see that the q-multiplication is generally not associative. The mth q-power 

of X is defined as follows: 

*X1 =X and Jmf’ = q&7. qXm). 

As before, we need some notations: 

@, = C @&I&), 
(i,)EQ), 

&(8=(-l)” C Q(i,(iS)li,(iS)), 
(i,)E% 

C, = (c,(ij)),Xn. 

The relations between J”‘, C, and tr, are the following. 

Lemma 2.3. ( 1) Co =X. 

(2) cn-, =(-l)“-‘tr~z,,,=(-l)“-‘Dz,,,. 

(3)C,=Oforallm>n. 

(4) C,=(-l)mXtrm + ,(X.C,_1)for all m= 1,...,12 - 1. 

(5) Cm= ~~=~(-l)“-~~X~+‘tr~_kfor all m= l,...,n - 1. 

Proof. (l)-(3), and (5) can be proved in the same way as those in Lemma 2.1 (see the 

proof of Lemma 2.1). 

(4) By (P1.2) and (P1.3), 

ol(i,(i,)lj,(i,))=xijD(i,li,) 
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and hence 

= (-l)“Xij C D(is[ is) + (-l)m-’ 2 xii,qi,jcm-l(itj). 

CC) E 4 it=1 

Therefore it follows that C, = (- 1)“X trm + &X G-1). 0 

Now we are ready to prove the second quantum version of the characteristic equation. 

Theorem 2.4. The generic matrix X = (Xij)nxn satisfies the following characteristic 

equation: 

Jn - J-h f.. + (-l)"-'xtrn_l + (-l)“Dlnxn =o. 

Proof. By Lemma 2.3(5) 

n-1 

LHS= ~(-l)“-l-k,Xk+‘tr,-l-k +(-l)nDz,.,=C,_i -c,_i=o. 17 

k=O 

By definition, ,$P’ =X”’ when q = 1. Hence, if q = 1, both quantum characteristic 

equations reduce to the classical one. 

3. Muir’s formula 

Let A = (aij),,, be an n x n matrix over a commutative ring. Muir’s formula states 

that 

e(-l)m C P(isIi,)D(l...(~~)...nll...(~)...n)=O. 

m=O (6 ) E % 

Here (l... ( &).. . n) is the complement of (il . . . &) in the set (1,. . . , n). As in Section 

2,P(i,Ii,)(resp.D(l...(~)...nll...(~)... n)) is an m x m principal sub-permanent 

(resp. (n - m) x (n - m) principal minor) of A. In this section we will prove Muir’s 

formula for the generic matrix X of the quantum group K[GL,(n)]. As usual we need 

some new notations. Denote 

0, = 
c { 

P(i,li,)D(l... (c)...nll... ({)...n) 

(&)E%,ilri 

+ ~q-l~~(il...~t...~,lli ,... ;t...kit) 

f=l 
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x D,(i,2.. . ( I). . .41,2...( i&..n) II ) 
E,= c P(iS/i,)D(l... (z$..nll... (&n). 

(4) E % 

The relations between 0, and I!$, are the following: 

Lemma 3.1. (1) El -O1=D=D(l...nll...n). 

(2) O,_,=P=P(l...nll...n). 

(3)0,=E,+t-O,+tforallm=l,~~~,n-2. 

Proof. We will use (P1.2) and (P1.3) and the following versions of the Laplace ex- 

pansion: 

(1) 

El _O1 = ~xii~(l...~...n,l...~...n)_~~xii~(1...;...n,l...~...n) 

i=l i=2 

+q-‘Xliol(n...;...nl1,2...1...n)} 

= Xl,D(2.. .42’ ..n)+i:(-qil)XliDl(i2...i...nl1,2...;...n) 
i=2 

= D(1 . ..nll . ..n)=D. 

(2) 

P = P,(2...n,112...n,l) 

= Pr(2..-n12.. .n)xll + 2 q-‘P,(2... 

i=2 

= 0,-l. 

(3) Follows by direct and tedious computations. Details are left to the reader. 0 

We are now ready to prove Muir’s formula for the quantum generic matrix X. 
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Theorem 3.2. Let X = (xij)nxn be the generic matrix of K[GL,(n)]. The following 

equation holds: 

k(-l)m C P(jsIi,)D(l...(~)...nll...(~)...n)=O. 

m=O (L) E 4 

Proof. By Lemma 3.1(3), E&=0,,, +0,-i for m=2,...,n - 1. Hence 

n-1 

c 
(-l)“&=O, +(-l)“-‘O,_t=Et -D+(-1)“~‘P. 

m=2 

Therefore D + Gil: (- 1 )“& + (- 1 )“P = 0, or equivalently, Ci=, (- 1 )“&, = 0. 0 

In general, P(i,li,) and D(l...(~)...nll...(~)...n) do not commute with each 

other since K[GL9(n)] is not a commutative ring. However we can similarly prove the 

following Muir’s formula. 

2(-l)” c D(l...(~)...nll...(~)..-n)P(i,li,)=O. 

m=O &)E4 

4. Some remarks 

Remark 4.1. In general, X”-’ Trl # Trl X”-’ and 

X” - TrJ”-’ + . . . +(-I)“-’ Tr,_l .X + (-1)“Tm # 0. 

Similarly, qXn-’ tr’ # tri X”-’ and 

$7 - trlq X”-’ + . . . + (-l)“-’ tr,_lX + Dlnxn # 0. 

But the following two equations hold: 

(X’)” - Trl(X’)“-’ + . . . + (-l)“-’ Tr,_&’ + (-1)“Tm = 0, 

(XT); - trl(X’);-’ + . . . +(-l)“-‘tr,_lXT+DZnxn=O. 

Here X’ is the transpose matrix of X and (XT); is another kind of Zth q-power of X’. 

Remark 4.2. All theorems in this paper hold for the multiparameter quantization of 

GL(n) (for a definition see [2]). The left and right quantum minors as well as the left 

and right sub-permanents are defined in a similar way. Both quantum versions of the 

Cayley-Hamilton theorem and Muir’s formula hold for the generic matrix X = (Xij)nxn 

of the multiparameter quantization of GL(n). 

Remark 4.3. To prove the Cayley-Hamilton theorem and Muir% formula, only half 

of the relations are needed. For example, we consider the algebra K(xij)/(r,), where 
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(Ye) is the relation ideal generated by the following relations: 

xitxis - qxisxit = 0 for all s < t and i, 

Xifq, + qxjtxis - qxisxjt - q2%,xi, = 0 for all i < j and s < t. 

These relations span a subspace of R, with dimension in2(n2 - l), where R, is the 

relation vector space for the quantum semigroup K[M,(n)]. Recall that dim R, = 

g?(n2 - 1). Both quantum versions of the Cayley-Hamilton theorem and Muir’s for- 

mula hold for the generic matrix X of K(xij)/(Yq). 
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