JOURNAL OF
PURE AND
APPLIED ALGEBRA

# The quantum Cayley-Hamilton theorem ${ }^{1}$ 

J.J. Zhang*<br>Department of Mathernatics, University of Michigan, Ann Arbor, MI 48109, USA

Communicated by J.D. Stasheff; received 21 June 1993; received in revised form 15 November 1996


#### Abstract

Let $X=\left(x_{i j}\right)_{n \times n}$ be the generic matrix of the quantum group $K\left[G L_{q}(n)\right]$. First we prove that $X$ satisfies two quantum characteristic equations, both become the classical characteristic equation when $q=1$. Second we prove a quantum version of Muir's formula for $X$. © Elsevier Science B.V. All rights reserved.


AMS Classification: 15A24, 17B37

## 1. Definitions and basic properties

Let $K$ be a field and let $q$ be a nonzero element in $K$. The quantum group $K\left[G L_{q}(n)\right]$ is a deformation of the Hopf algebra $K[G L(n)]$; as an algebra, it is defined by

$$
K\left[G L_{q}(n)\right]=K\left[M_{q}(n)\right]\left[D^{-1}\right] \quad \text { and } \quad K\left[M_{q}(n)\right]=K\left\langle x_{i j}\right\rangle /\left(R_{q}\right)
$$

where $K\left\langle x_{i j}\right\rangle$ is the free algebra generated hy $\left\{x_{i j} \mid i, j=1, \ldots, n\right\}$ and $\left(R_{q}\right)$ is the ideal generated by the following quadratic relations:

$$
\begin{array}{ll}
x_{j t} x_{i t}=q x_{i t} x_{j t} & \text { for all } i<j \text { and } t, \\
x_{i t} x_{i s}=q x_{i s} x_{i t} & \text { for all } s<t \text { and } i, \\
x_{i t} x_{j s}=x_{j s} x_{i t} & \text { for all } i<j \text { and } s<t, \\
x_{i s} x_{j t}-x_{j t} x_{i s}=\left(q-q^{-1}\right) x_{i t} x_{j s} & \text { for all } i<j \text { and } s<t .
\end{array}
$$

[^0]The relation vector space $R_{q}$ has dimension $\frac{1}{2} n^{2}\left(n^{2}-1\right)$ as in the classical case $(q=1)$. The basic properties of $K\left[G L_{q}(n)\right]$ can be found in [1]. The quantum determinant, denoted by $D$, is

$$
D=\sum_{\sigma \in S_{n}}(-q)^{-l(\sigma)} x_{\sigma(1) 1} \cdots x_{\sigma(n) n}=\sum_{\sigma \in S_{n}}(-q)^{-l(\sigma)} x_{1 \sigma(1)} \cdots x_{n \sigma(n)}
$$

where $S_{n}$ is the $n$th symmetric group, $l\left(i_{1}, \ldots, i_{n}\right)$ is the number of inversions of the sequence $\left(i_{1}, \ldots, i_{n}\right)$ and $l(\sigma)=l(\sigma(1), \ldots, \sigma(n))$. The coalgebra structure of $K\left[M_{q}(n)\right]$ and $K\left[G L_{q}(n)\right]$ is determined by the following rules:

$$
\begin{array}{ll}
\Delta\left(x_{i j}\right)=\sum_{k=1}^{n} x_{i k} \otimes x_{k j} & \text { for all } i \text { and } j, \\
\varepsilon\left(x_{i j}\right)=\delta_{i j} & \text { for all } i \text { and } j
\end{array}
$$

where $\delta_{i j}$ is the Kronecker delta. The matrix $X=\left(x_{i j}\right)_{n \times n}$ is called the generic matrix of $K\left[M_{q}(n)\right]$ and $K\left[G L_{q}(n)\right]$. If $q \neq 1$, the entries of $X$ are noncommutative.

The left and right quantum minors (or sub-determinants) and left and right quantum sub-permanents play a key role in this paper. Let $\left(i_{1}, \ldots, i_{m}\right)$ and $\left(j_{1}, \ldots j_{m}\right)$ be two sequences of integers between 1 and $n$. Here neither ( $i_{1}, \ldots, i_{m}$ ) nor ( $j_{1}, \ldots, j_{m}$ ) needs to be increasing. The left and right quantum minors $D_{1}\left(i_{s} \mid j_{s}\right)$ and $D_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)$ are

$$
\begin{aligned}
& D_{1}\left(i_{s} \mid j_{s}\right)=\sum_{\sigma \in S_{m}}(-q)^{-l\left(j_{\sigma(s)}\right)+l\left(j_{s}\right)} x_{i_{1} j_{\sigma(l)}} \cdots x_{i_{m} j_{\sigma(m)}}, \\
& D_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)=\sum_{\sigma \in S_{m}}(-q)^{-l\left(i_{\sigma(s)}\right)+l\left(i_{s}\right)} x_{i_{\sigma(1)} j_{1}} \cdots x_{i_{\sigma(m)} j_{m}}
\end{aligned}
$$

The left and right quantum sub-permanents $P_{1}\left(i_{s} \mid j_{s}\right)$ and $P_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)$ are

$$
\begin{aligned}
& P_{1}\left(i_{s} \mid j_{s}\right)=\sum_{\sigma \in S_{m}} q^{l\left(j_{\sigma(s)}\right)-l\left(j_{s}\right)_{i_{1} j_{\sigma(1)}} \cdots x_{i_{m} j_{\sigma(m)}},} \\
& P_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)=\sum_{\sigma \in S_{m}} q^{l\left(i_{\sigma(s)}\right)-l\left(i_{s}\right)} x_{i_{\sigma(1)} j_{1}} \cdots x_{i_{\sigma(m)} j_{m}}
\end{aligned}
$$

The following properties of quantum minors and quantum sub-permanents can be found in [1], which can be proved easily by using corepresentations of $K\left[M_{q}(n)\right]$.
(P1.1) Given a positive integer $m \leq n$, let $\Phi_{m}$ denote the set

$$
\Phi_{m}=\left\{\left(i_{1}, \ldots, i_{m}\right) \mid 1 \leq i_{1}<\cdots<i_{m} \leq n\right\} .
$$

If $\left(i_{s}\right)$ and $\left(j_{s}\right)$ are in $\Phi_{m}$, then $D_{1}\left(i_{s} \mid j_{s}\right)=D_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)$; in this case, it is called quantum minor and denoted by $D\left(i_{s} \mid j_{s}\right)$. Similarly $P_{1}\left(i_{s} \mid j_{s}\right)=P_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)$, and it is called quantum sub-permanent and denoted by $P\left(i_{s} \mid j_{s}\right)$. The set $\Phi_{0}$ has only one element which is the empty set $\phi$. We assume that $P(\phi \mid \phi)=D(\phi \mid \phi)=1$ (used in Section 3). By definition, $P(i \mid j)=D(i \mid j)=x_{i j}$ and $D(1 \cdots n \mid 1 \cdots n)=D$. The sub-permanent $P(1 \cdots n \mid 1 \cdots n)$ is
denoted by $P$ and it is called the quantum permanent of $X$. In general, $P\left(i_{s} \mid j_{s}\right) \neq$ $D\left(i_{s} \mid j_{s}\right)$ when $m \geq 2$.
(P1.2) A left (resp. right) quantum minor $D_{1}\left(i_{s} \mid j_{s}\right)$ (resp. $D_{\mathrm{r}}\left(i_{s} \mid j_{s}\right)$ ) is equal to zero if and only if either $i_{s}=i_{t}$ for some $s<t$ or $j_{s}=j_{t}$ for some $s<t$. This statement is not true for the quantum sub-permanents. If $\left(i_{s}^{\prime}\right)$ (resp. $\left(j_{s}^{\prime}\right)$ ) is a permutation of a nondecreasing sequence ( $i_{s}$ ) (resp. ( $j_{s}$ ), then

$$
D_{1}\left(i_{s}^{\prime} \mid j_{s}^{\prime}\right)=(-q)^{l\left(i_{s}^{\prime}\right)-l\left(i_{s}^{\prime}\right)} D\left(i_{s} \mid j_{s}\right) \quad \text { and } \quad D_{\mathrm{r}}\left(i_{s}^{\prime} \mid j_{s}^{\prime}\right)=(-q)^{l\left(i_{s}^{\prime}\right)-h\left(j_{s}^{\prime}\right)} D\left(i_{s} \mid j_{s}\right)
$$

and

$$
P_{1}\left(i_{s}^{\prime} \mid j_{s}^{\prime}\right)=q^{l\left(i_{s}^{\prime}\right)-l\left(j_{s}^{\prime}\right)} P\left(i_{s} \mid j_{s}\right) \quad \text { and } \quad P_{\mathrm{r}}\left(i_{s}^{\prime} \mid j_{s}^{\prime}\right)=q^{l\left(j_{s}^{\prime}\right)-l\left(i_{s}^{\prime}\right)} P\left(i_{s} \mid j_{s}\right)
$$

(P1.3) Quantum versions of the Laplace expansion hold:

$$
\begin{aligned}
& D_{1}\left(i_{1} \cdots i_{m} \mid j_{1} \cdots j_{m}\right) \\
& \quad=\sum_{\sigma \in S_{m}^{k}}(-q)^{-l\left(j_{\sigma(s)}\right)+l\left(j_{s}\right)} D_{1}\left(i_{1} \cdots i_{k} \mid j_{\sigma(1)} \cdots j_{\sigma(k)}\right) D_{l}\left(i_{k+1} \cdots i_{m} \mid j_{\sigma(k+1)} \cdots j_{\sigma(m)}\right), \\
& D_{\mathrm{r}}\left(i_{1} \cdots i_{m} \mid j_{1} \cdots j_{m}\right) \\
& \quad=\sum_{\sigma \in S_{m}^{k}}(-q)^{-l\left(i_{\sigma(s)}\right)+l\left(i_{s}\right)} D_{\mathrm{r}}\left(i_{\sigma(1)} \cdots i_{\sigma(k)} \mid j_{1} \cdots j_{k}\right) D_{\mathrm{r}}\left(i_{\sigma(k+1)} \cdots i_{\sigma(m)} \mid j_{k+1} \cdots j_{m}\right), \\
& P_{1}\left(i_{1} \cdots i_{m} \mid j_{1} \cdots j_{m}\right) \\
& \quad=\sum_{\sigma \in S_{m}^{k}} q^{l\left(j_{\sigma(s)}\right)-l\left(j_{s}\right)} P_{\mathrm{l}}\left(i_{1} \cdots i_{k} \mid j_{\sigma(1)} \cdots j_{\sigma(k)}\right) P_{1}\left(i_{k+1} \cdots i_{m} \mid j_{\sigma(k+1)} \cdots j_{\sigma(m)}\right), \\
& P_{\mathrm{r}}\left(i_{1} \cdots i_{m} \mid j_{1} \cdots j_{m}\right) \\
& \quad=\sum_{\sigma \in S_{m}^{k}} q^{l\left(i_{(\tau s)}\right)-l l\left(i_{s}\right)} P_{\mathrm{r}}\left(i_{\sigma(1)} \cdots i_{\sigma(k) \mid} \mid j_{1} \cdots j_{k}\right) P_{\mathrm{r}}\left(i_{\sigma(k+1)} \cdots i_{\sigma(m) \mid} \mid j_{k+1} \cdots j_{m}\right)
\end{aligned}
$$

where $S_{m}^{k}=\left\{\sigma \in S_{m} \mid \sigma(1)<\cdots<\sigma(k)\right.$ and $\left.\sigma(k+1)<\cdots<\sigma(m)\right\}$ consists of all $k$-shuffles in $S_{n}$.

## 2. The Cayley-Hamilton theorem

Let $A=\left(a_{i j}\right)_{n \times n}$ be an $n \times n$ matrix over a commutative ring. Then $A$ satisfies the classical characteristic equation

$$
A^{n}-t r_{1} A^{n-1}+\cdots+(-1)^{n-1} \operatorname{tr}_{n-1} A+(-1)^{n} \operatorname{det} A I_{n \times n}=0
$$

where the $k$ th trace $t r_{k}$ is the sum of all $k \times k$ principal minors of $A$, $\operatorname{det} A$ is the determinant of $A$ and $I_{n \times n}$ is the $n \times n$ identity matrix.

It is easy to check that if $q \neq 1$, the generic matrix $X$ of the quantum group $K\left[G L_{q}(n)\right]$ does not satisfy the classical characteristic equation. The aim of this section is to prove $X$ satisfies two quantum versions of the characteristic equation. We need to define quantum trace and other notations. For simplicity, let $q_{i j}=q$ if $i<j, q_{i j}=1$ if $i=j$, and $q_{i j}=q^{-1}$ if $i>j$. For every $i, j$ and $m$, denote

$$
\begin{aligned}
& \operatorname{tr}_{m}(j)=\sum_{\left(i_{s}\right) \in \Phi_{m}}\left(\prod_{t=1}^{m} q_{j i_{t}}\right) D\left(i_{s} \mid i_{s}\right), \\
& \operatorname{Tr}_{m}=\left(\operatorname{tr}_{m}(j) \delta_{i j}\right)_{n \times n}, \\
& b_{m}(i j)=\sum_{\left(i_{s}\right) \in \Phi_{m}} D_{l}\left(i,\left(i_{s}\right) \mid\left(i_{s}\right), j\right) .
\end{aligned}
$$

So $T r_{m}$ is a diagonal $n \times n$-matrix. Let $B_{m}$ denote the $n \times n$-matrix $\left(b_{m}(i j)\right)_{n \times n}$. The following lemma gives some relations between $X, B_{m}$ and $\operatorname{Tr}_{m}$.

Lemma 2.1. (1) $B_{0}=X$.
(2) $B_{n-1}=(-1)^{n-1} T r_{n}$ and $t r_{n}(i)=q^{n+1-2 i} D$.
(3) $B_{m}=0$ for all $m \geq n$.
(4) $B_{m}=(-1)^{m} X \cdot \operatorname{Tr}_{m}+X \cdot B_{m-1}$ for all $m=1, \ldots, n-1$.
(5) $B_{m}=\sum_{k=0}^{m}(-1)^{m-k} X^{k+1} \cdot T r_{m-k}$ for all $m=1, \ldots, n-1$.

Proof. (1) If $m=0, b_{0}(i j)=D_{1}(i \mid j)=x_{i j}$, and $B_{0}=X$.
(2) By ( P 1.2 ), $b_{n-1}(i, j)=0$ for all $i \neq j$ and $b_{n-1}(i i)=(-1)^{n-1} t_{n}(i)$, which gives that $B_{n-1}=(-1)^{n-1} T r_{n}$. An easy computation shows that $t_{n}(i)=q^{n+1-2 i} D$.
(3) By ( P 1.2 ), for all $m \geq n, b_{m}(i j)=0$ and then $B_{m}=0$.
(4) By (P1.2) and (P1.3),

$$
\begin{aligned}
D_{1}\left(i,\left(i_{s}\right) \mid\left(i_{s}\right), j\right)= & \prod_{t=1}^{m}\left(-q_{j i_{t}}\right) x_{i j} D_{1}\left(i_{s} \mid i_{s}\right) \\
& +\sum_{t=1}^{m} x_{i i_{t}} D_{1}\left(i_{t} i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m} \mid i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m}, j\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
b_{m}(i j) & =\sum_{\left(i_{s}\right) \in \Phi_{m}} D_{1}\left(i,\left(i_{s}\right) \mid\left(i_{s}\right), j\right) \\
& =(-1)^{m} x_{i j}\left(\sum_{\left(i_{s}\right) \in \Phi_{m}} \prod_{t=1}^{m} q_{j i_{t}} D\left(i_{s} \mid i_{s}\right)\right)+\sum_{i_{s}=1}^{n} x_{i i_{s}} b_{m-1}\left(i_{s} j\right) .
\end{aligned}
$$

Therefore we obtain $B_{m}=(-1)^{m} X \cdot \operatorname{Tr}_{m}+X B_{m-1}$.
(5) This follows from (4) and straightforward induction.

We are ready to prove the first quantum version of the characteristic equation.

Theorem 2.2. The generic matrix $X=\left(x_{i j}\right)_{n \times n}$ satisfies the following characteristic equation:

$$
X^{n}-X^{n-1} \cdot \operatorname{Tr}_{1}+\cdots+(-1)^{n-1} X \cdot \operatorname{Tr}_{n-1}+(-1)^{n} \operatorname{Tr}_{n}=0
$$

Proof. By Lemma 2.1(5),

$$
L H S=\left(\sum_{k=0}^{n-1}(-1)^{n-1-k} X^{k+1} \operatorname{Tr}_{n-1-k}\right)+(-1)^{n} \operatorname{Tr}_{n}=B_{n-1}-B_{n-1}=0
$$

By definition, only when $q=1, T r_{k}$ become the classical $k$ th trace function of $X$. In Theorem 2.2, we use the ordinary powers of $X$ and quantum traces $T r_{k}$. Next we will prove another quantum version of characteristic equation by using ordinary trace functions $t r_{k}$ and quantum powers of $X$. Let $Y=\left(y_{i j}\right)_{n \times n}$ be an $n \times n$ matrix over $K\left[G L_{q}(n)\right]$. The $q$-multiplication of $X$ and $Y$ is defined by

$$
{ }_{q}(X \cdot Y)=\left(_{q}(X \cdot Y)_{i j}\right)_{n \times n} \quad \text { and } \quad{ }_{q}(X \cdot Y)_{i j}=\sum_{k=1}^{n} x_{i k} q_{k j} y_{k j} .
$$

It is easy to see that the $q$-multiplication is generally not associative. The $m$ th $q$-power of $X$ is defined as follows:

$$
{ }_{q} X^{1}=X \quad \text { and } \quad{ }_{q} X^{m+1}={ }_{q}\left(X \cdot{ }_{q} X^{m}\right) .
$$

As before, we need some notations:

$$
\begin{aligned}
& \operatorname{tr}_{m}=\sum_{\left(i_{s}\right) \in \Phi_{m}} D\left(i_{s} \mid i_{s}\right), \\
& C_{m}(i j)=(-1)^{m} \sum_{\left(i_{s}\right) \in \Phi_{m}} D_{1}\left(i,\left(i_{s}\right) \mid j,\left(i_{s}\right)\right), \\
& C_{m}=\left(c_{m}(i j)\right)_{n \times n} .
\end{aligned}
$$

The relations between ${ }_{q} X^{m}, C_{m}$ and $t r_{m}$ are the following.
Lemma 2.3. (1) $C_{0}=X$.
(2) $C_{n-1}=(-1)^{n-1} t r_{n} I_{n \times n}=(-1)^{n-1} D I_{n \times n}$.
(3) $C_{m}=0$ for all $m \geq n$.
(4) $C_{m}=(-1)^{m} X t r_{m}+{ }_{q}\left(X \cdot C_{m-1}\right)$ for all $m=1, \ldots, n-1$.
(5) $C_{m}=\sum_{k=0}^{m}(-1)^{m-k} X^{k+1} t r_{m-k}$ for all $m=1, \ldots, n-1$.

Proof. (1)-(3), and (5) can be proved in the same way as those in Lemma 2.1 (see the proof of Lemma 2.1).
(4) By (P1.2) and (P1.3),

$$
\begin{aligned}
D_{1}\left(i,\left(i_{s}\right) \mid j,\left(i_{s}\right)\right)= & x_{i j} D\left(i_{s} \mid i_{s}\right) \\
& +\sum_{t=1}^{m}\left(-q_{i_{t}}\right) x_{i i_{t}} D_{1}\left(i_{t} i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m} \mid j, i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
c_{m}(i j) & =(-1)^{m} \sum_{\left(i_{s}\right) \in \Phi_{m}} D_{l}\left(i,\left(i_{s}\right) \mid j,\left(i_{s}\right)\right) \\
& =(-1)^{m} x_{i j} \sum_{\left(i_{s}\right) \in \Phi_{m}} D\left(i_{s} \mid i_{s}\right)+(-1)^{m-1} \sum_{i_{t}=1}^{n} x_{i i_{t}} q_{i_{t} j} c_{m-1}\left(i_{t} j\right) .
\end{aligned}
$$

Therefore it follows that $C_{m}=(-1)^{m} X t r_{m}+{ }_{q}\left(X C_{m-1}\right)$.
Now we are ready to prove the second quantum version of the characteristic equation.
Theorem 2.4. The generic matrix $X=\left(x_{i j}\right)_{n \times n}$ satisfies the following characteristic equation:

$$
{ }_{q} X^{n}-{ }_{q} X^{n-1} \operatorname{tr}_{1}+\cdots+(-1)^{n-1} X \operatorname{tr}_{n-1}+(-1)^{n} D I_{n \times n}=0 .
$$

Proof. By Lemma 2.3(5)

$$
L H S=\left(\sum_{k=0}^{n-1}(-1)^{n-1-k}{ }_{q} X^{k+1} t r_{n-1-k}\right)+(-1)^{n} D I_{n \times n}=C_{n-1}-C_{n-1}=0 .
$$

By definition, ${ }_{q} X^{m}=X^{m}$ when $q=1$. Hence, if $q=1$, both quantum characteristic equations reduce to the classical one.

## 3. Muir's formula

Let $A=\left(a_{i j}\right)_{n \times n}$ be an $n \times n$ matrix over a commutative ring. Muir's formula states that

$$
\sum_{m=0}^{n}(-1)^{m} \sum_{\left(i_{s}\right) \in \Phi_{n}} P\left(i_{s} \mid i_{s}\right) D\left(1 \cdots\left(\hat{i}_{s}\right) \cdots n \mid 1 \cdots\left(\hat{i}_{s}\right) \cdots n\right)=0
$$

Here $\left(1 \cdots\left(\hat{i}_{s}\right) \cdots n\right)$ is the complement of $\left(i_{1} \cdots i_{m}\right)$ in the set $(1, \ldots, n)$. As in Section 2, $P\left(i_{s} \mid i_{s}\right)$ (resp. $D\left(1 \cdots\left(\hat{i_{s}}\right) \cdots n \mid 1 \cdots\left(\hat{i_{s}}\right) \cdots n\right)$ ) is an $m \times m$ principal sub-permanent (resp. $(n-m) \times(n-m)$ principal minor) of $A$. In this section we will prove Muir's formula for the generic matrix $X$ of the quantum group $K\left[G L_{q}(n)\right]$. As usual we need some new notations. Denote

$$
\begin{aligned}
O_{m}= & \sum_{\left(i_{s}\right) \in \Phi_{m}, i_{1}>1}\left\{P\left(i_{s} \mid i_{s}\right) D\left(1 \cdots\left(\hat{i_{s}}\right) \cdots n \mid 1 \cdots\left(\hat{i_{s}}\right) \cdots n\right)\right. \\
& +\left[\sum_{t=1}^{m} q^{-1} P_{\mathrm{r}}\left(i_{1} \cdots \hat{i}_{t} \cdots i_{m}, 1 \mid i_{1} \cdots \hat{i}_{t} \cdots i_{m} i_{t}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.\left.\times D_{1}\left(i_{t} 2 \cdots\left(\hat{i}_{s}\right) \cdots n \mid 1,2 \cdots\left(\hat{i}_{s}\right) \cdots n\right)\right]\right\} \\
E_{m}=\sum_{\left(i_{s}\right) \in \Phi_{m}} P\left(i_{s} \mid i_{s}\right) D\left(1 \cdots\left(\hat{i_{s}}\right) \cdots n \mid 1 \cdots\left(\hat{i_{s}}\right) \cdots n\right)
\end{gathered}
$$

The relations between $O_{m}$ and $E_{m}$ are the following:

Lemma 3.1. (1) $E_{1}-O_{1}=D=D(1 \cdots n \mid 1 \cdots n)$.
(2) $O_{n-1}=P=P(1 \cdots n \mid 1 \cdots n)$.
(3) $O_{m}=E_{m+1}-O_{m+1}$ for all $m=1, \cdots, n-2$.

Proof. We will use (P1.2) and (P1.3) and the following versions of the Laplace expansion:

$$
\begin{aligned}
D_{1}\left(i,\left(i_{s}\right) \mid j,\left(i_{s}\right)\right)= & x_{i j} D\left(i_{s} \mid i_{s}\right) \\
& +\sum_{t=1}^{m}\left(-q_{i_{i} j}\right) x_{i i_{t}} D_{1}\left(i_{t} i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m} \mid j, i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m}\right) \\
P_{\mathrm{r}}\left(\left(i_{s}\right), i \mid\left(i_{s}\right), j\right)= & P\left(i_{s} \mid i_{s}\right) x_{i j} \\
& +\sum_{t=1}^{m} q_{i_{t}} P_{\mathrm{r}}\left(i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m}, i \mid i_{1} \cdots i_{t-1} \hat{i}_{t} i_{t+1} \cdots i_{m} i_{t}\right) x_{i_{t} j}
\end{aligned}
$$

(1)

$$
\begin{aligned}
E_{1}-O_{1}= & \sum_{i=1}^{n} x_{i i} D(1 \cdots \hat{i} \cdots n \mid 1 \cdots \hat{i} \cdots n)-\sum_{i=2}^{n}\left\{x_{i i} D(1 \cdots \hat{i} \cdots n \mid 1 \cdots \hat{i} \cdots n)\right. \\
& \left.+q^{-1} x_{1 i} D_{1}(i 2 \cdots \hat{i} \cdots n \mid 1,2 \cdots \hat{i} \cdots n)\right\} \\
= & x_{11} D(2 \cdots n \mid 2 \cdots n)+\sum_{i=2}^{n}\left(-q_{i 1}\right) x_{1 i} D_{1}(i 2 \cdots \hat{i} \cdots n \mid 1,2 \cdots \hat{i} \cdots n) \\
= & D(1 \cdots n \mid 1 \cdots n)=D .
\end{aligned}
$$

(2)

$$
\begin{aligned}
P & =P_{\mathrm{r}}(2 \cdots n, 1 \mid 2 \cdots n, 1) \\
& =P_{\mathrm{r}}(2 \cdots n \mid 2 \cdots n) x_{11}+\sum_{i=2}^{n} q^{-1} P_{\mathrm{r}}(2 \cdots \hat{i} \cdots n, 1 \mid 2 \cdots \hat{i} \cdots n, i) x_{i 1} \\
& =O_{n-1} .
\end{aligned}
$$

(3) Follows by direct and tedious computations. Details are left to the reader.

We are now ready to prove Muir's formula for the quantum generic matrix $X$.

Theorem 3.2. Let $X=\left(x_{i j}\right)_{n \times n}$ be the generic matrix of $K\left[G L_{q}(n)\right]$. The following equation holds:

$$
\sum_{m=0}^{n}(-1)^{m} \sum_{\left(i_{s}\right) \in \Phi_{\Phi_{m}}} P\left(i_{s} \mid i_{s}\right) D\left(1 \cdots\left(\hat{i}_{s}\right) \cdots n \mid 1 \cdots\left(\hat{i_{s}}\right) \cdots n\right)=0
$$

Proof. By Lemma 3.1(3), $E_{m}=O_{m}+O_{m-1}$ for $m=2, \ldots, n-1$. Hence

$$
\sum_{m=2}^{n-1}(-1)^{m} E_{m}=O_{1}+(-1)^{n-1} O_{n-1}=E_{1}-D+(-1)^{n-1} P
$$

Therefore $D+\sum_{m=1}^{n-1}(-1)^{m} E_{m}+(-1)^{n} P=0$, or equivalently, $\sum_{m=0}^{n}(-1)^{m} E_{m}=0$.
In general, $P\left(i_{s} \mid i_{s}\right)$ and $D\left(1 \cdots\left(\hat{i_{s}}\right) \cdots n \mid 1 \cdots\left(\hat{i_{s}}\right) \cdots n\right)$ do not commute with each other since $K\left[G L_{q}(n)\right]$ is not a commutative ring. However we can similarly prove the following Muir's formula.

$$
\sum_{m=0}^{n}(-1)^{m} \sum_{\left(i_{s}\right) \in \Phi_{\Phi_{m}}} D\left(1 \cdots\left(\hat{i_{s}}\right) \cdots n \mid 1 \cdots\left(\hat{i_{s}}\right) \cdots n\right) P\left(i_{s} \mid i_{s}\right)=0
$$

## 4. Some remarks

Remark 4.1. In general, $X^{n-l} \operatorname{Tr}_{l} \neq \operatorname{Tr}_{l} X^{n-l}$ and

$$
X^{n}-\operatorname{Tr}_{1} X^{n-1}+\cdots+(-1)^{n-1} T r_{n-1} \cdot X+(-1)^{n} T r_{n} \neq 0
$$

Similarly, ${ }_{q} X^{n-l} \operatorname{tr}^{l} \neq t r_{q}^{l} X^{n-l}$ and

$$
{ }_{q} X^{n}-\operatorname{tr}_{1_{q}} X^{n-1}+\cdots+(-1)^{n-1} \operatorname{tr}_{n-1} X+D I_{n \times n} \neq 0 .
$$

But the following two equations hold:

$$
\begin{aligned}
& \left(X^{\tau}\right)^{n}-\operatorname{Tr}_{1}\left(X^{\tau}\right)^{n-1}+\cdots+(-1)^{n-1} \operatorname{Tr}_{n-1} X^{\tau}+(-1)^{n} \operatorname{Tr}_{n}=0, \\
& \left(X^{\tau}\right)_{q}^{n}-\operatorname{tr}_{1}\left(X^{\tau}\right)_{q}^{n-1}+\cdots+(-1)^{n-1} \operatorname{tr}_{n-1} X^{\tau}+D I_{n \times n}=0 .
\end{aligned}
$$

Here $X^{\tau}$ is the transpose matrix of $X$ and $\left(X^{\tau}\right)_{q}^{l}$ is another kind of $l$ th $q$-power of $X^{\tau}$.
Remark 4.2. All theorems in this paper hold for the multiparameter quantization of $G L(n)$ (for a definition see [2]). The left and right quantum minors as well as the left and right sub-permanents are defined in a similar way. Both quantum versions of the Cayley-Hamilton theorem and Muir's formula hold for the generic matrix $X=\left(x_{i j}\right)_{n \times n}$ of the multiparameter quantization of $G L(n)$.

Remark 4.3. To prove the Cayley-Hamilton theorem and Muir's formula, only half of the relations are needed. For example, we consider the algebra $K\left\langle x_{i j}\right\rangle /\left(r_{q}\right)$, where
$\left(r_{q}\right)$ is the relation ideal generated by the following relations:

$$
\begin{aligned}
& x_{i t} x_{i s}-q x_{i s} x_{i t}=0 \quad \text { for all } s<t \text { and } i, \\
& x_{i t} x_{j s}+q x_{j t} x_{i s}-q x_{i s} x_{j t}-q^{2} x_{j s} x_{i t}=0 \quad \text { for all } i<j \text { and } s<t .
\end{aligned}
$$

These relations span a subspace of $R_{q}$ with dimension $\frac{1}{4} n^{2}\left(n^{2}-1\right)$, where $R_{q}$ is the relation vector space for the quantum semigroup $K\left[M_{\varphi}(n)\right]$. Recall that $\operatorname{dim} R_{\psi}=$ $\frac{1}{2} n^{2}\left(n^{2}-1\right)$. Both quantum versions of the Cayley-Hamilton theorem and Muir's formula hold for the generic matrix $X$ of $K\left\langle x_{i j}\right\rangle /\left(r_{q}\right)$.

## References

[1] B. Parshall, J.-P. Wang, Quantum linear groups I, II, Mem. Amer. Math. Soc. (1991) 439.
[2] A. Sudbery, Consistent multiparameter quantisation of $G L(n)$, J. Phys. A 23 (1990) L697-L704.


[^0]:    * Correspondence address: Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA. E-mail: zhang@math.washington.edu.
    ${ }^{1}$ The results of this paper were presented at the AMS summer research institute at Pennsylvania State University, University Park, 8-16 July 1991. The author wishes to thank Professors I. Frenkel, E. Friedlander, W. Haboush, J. Jantzen and B. Parshall for organizing the wonderful conference.

