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Abstract

Let X = (x,;)nxn be the generic matrix of the quantum group K[GL,(n)]. First we prove that X
satisfies two quantum characteristic equations, both become the classical characteristic equation
when ¢ =1. Second we prove a quantum version of Muir’s formula for X. © Elsevier Science
B.V. All rights reserved.

AMS Classification: 15A24, 17B37

1. Definitions and basic properties

Let K be a field and let g be a nonzero element in K. The quantum group K[GL,(n)]
is a deformation of the Hopf algebra K[GL(n)]; as an algebra, it is defined by

K[GLy(m)]=K[M;m)I[D™'] and K[M,(m)]=K(x;;)/(Ry)

where K (x;;) is the free algebra generated by {x;;|i,j=1,...,n} and (R;) is the ideal
generated by the following quadratic relations:

XjeXit = qXir Xz for all i </ and ¢,
XitXis = qXisXit for all s < ¢ and i,
XitXjs = XjsXiy foralli<jands <t

XigXis — X Xis = (q — q_1 Wixjs foralli<jands <t
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The relation vector space R, has dimension 1n%(n>—1) as in the classical case (g =1).
The basic properties of K[GL,(n)] can be found in [1]. The quantum determinant,
denoted by D, is

D= Z (=) x5y -+ Xo(myn = Z (=) " x15qty - - Xnoin)
GES, GES,

where S, is the nth symmetric group, /(ii,...,i,) is the number of inversions of the
sequence (iy,...,i,) and {(¢)=1I(c(1),...,0(n)). The coalgebra structure of K[M,(n)]
and K[GL,(n)] is determined by the following rules:

n
A(xij)= Z xik ® x; for alliand j,
k=1

&(xi;) = 6;; for all i and j,

where §;; is the Kronecker delta. The matrix X = (x;;),x» is called the generic matrix
of K{M,(n)] and K[GL,(n)]. If q # 1, the entries of X are noncommutative.

The left and right quantum minors (or sub-determinants) and left and right quantum
sub-permanents play a key role in this paper. Let (i|,...,in) and (Jji,...jm) be two
sequences of integers between 1 and n. Here neither (iy,...,i,) nor (j,...,/m) needs
to be increasing. The left and right quantum minors Dy(is|j;) and D,(ig| j;) are

s —I(Jos)+H(Js
Dl(’s']s) = Z (—q) o)+ )xilja(l) * Ximjamy
CESy

L s — (s
Dr(’Sl]S) = Z () Ut + 10 )xia(nfl * Xiggmyjm*
gESy,

The left and right quantum sub-permanents P(is| j;) and P(is|js) are

s KV
Pl(’sl]s) = E q Cror) (h)‘xilja(l) " Xipjomy
GES,

; r [ .0: —1 '.\'
Pr(’S']S): Z q9 o)~ )xia(njl * Xigmyim®
GESH

The following properties of quantum minors and quantum sub-permanents can be
found in [1], which can be proved easily by using corepresentations of K[M,(n)].
(P1.1) Given a positive integer m < n, let &, denote the set

G ={(1,-., i)l £H < -+ <ip <0}

If (is) and (j;) are in @, then Di(is|js) = D:(is| js); in this case, it is called quantum
minor and denoted by D(is|j;). Similarly P(is|js)=P;(is| js), and it is called quantum
sub-permanent and denoted by P(i|j;). The set @y has only one element which is the
empty set ¢. We assume that P(¢|¢)=D(¢|¢p)=1 (used in Section 3). By definition,
P(i|j)=D(i|j)=x;; and D(1---n|1---n)=D. The sub-permanent P(1---n|1---n) is
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denoted by P and it is called the quantum permanent of X. In general, P(is|js) #
D(is|js) when m > 2.

(P1.2) A left (resp. right) quantum minor Dj(ig|j,) (resp. D.(is| j)) i3 equal to zero
if and only if either i, =i, for some s <¢ or j;=j; for some s <. This statement
is not true for the quantum sub-permanents. If (i!) (resp. (j1)) is a permutation of a
nondecreasing sequence (is) (resp. (js)), then

Diilj) = (=) ODGl js) and  Deil] 1) = (=)" DD G )
and
Pi(iy] j)=q" ™" UOPGi|js) and A1 j) = g" T OPG o).
(P1.3) Quantum versions of the Laplace expansion hold:
Di(iy -~ im|j1 - jm)

= > (@) IMIIDG ik oy Jo))DiGrsr < b oty o))
GESE,

= Z (_q)_l(im))+l(i:)Dr(ia(1) et iu’(k)|jl o 'jk)Dr(iu'(k+1) e ia(m)|jk+l o ]m),
oest

pl(i1 lm|]1]m)

= Y g IRy ik oty ot YPrGs | oty Fatm))
Sk,

Pr(il o lml]l v ]m)

= > gD TRy gy JOPistierty - oem kst + <+ ),
ogESk,

where S¥, ={c€Sn|a(1)< --- <o(k) and a(k + 1)< --- <o(m)} consists of all
k-shuffles in S,.

2. The Cayley—Hamilton theorem

Let 4=(a;;)nx» be an n x n matrix over a commutative ring. Then 4 satisfies the
classical characteristic equation

A" —tr A 4 (D) 1A + (= 1) det AL, =0

where the kth trace tr; is the sum of all k¥ x £ principal minors of A4, det 4 is the
determinant of 4 and I,x, is the n x n identity matrix.
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It is easy to check that if g#1, the generic matrix X of the quantum group
K[GL4(n)] does not satisfy the classical characteristic equation. The aim of this section
is to prove X satisfies two quantum versions of the characteristic equation. We need
to define quantum trace and other notations. For simplicity, let g;;=q if i <j, g;;=1
if i=j, and q;;=q~"! if i > j. For every i, j and m, denote

tru(j)= Z (H qjiz)D(isl is),

G)eEd \ =1
Trm:(trm(j)éij)nxm
bu(i)="Y_  Di(i,(ie)| (i) ).

(is) € By

So Tr, is a diagonal n x n-matrix. Let B, denote the n X n-matrix (b,(ij))axa. The
following lemma gives some relations between X, B,, and Tr,,.

Lemma 2.1. (1) By=X
(2) Bo_1 =(—~1Y"'Tr, and tr,(i)=q"t1~%D.
(3) B,=0 for all m > n.
M By=(—1)"X-Trpy+X-Bp—y for all m=1,...,n — 1.
m

(5) Bn= 3. (=1)"*X* L. Tr,  for all m=1,...,n— 1.
k=0

Proof. (1) If m=0, bo(ij)=Di(i| j)=x;;, and By =2X.

(2) By (P1.2), by_1(i,j)=0 for all i#j and b,_,(ii) =(—1)""'tr,(i), which gives
that B, ) =(—1)""'Tr,. An easy computation shows that tr,(i) =¢"*1=2%D.

(3) By (P12), for all m > n, bn(ij)=0 and then B, =0.

(4) By (P12) and (P1.3),

Dy, (i) (i) ) = [ (=g bxiiDiCis | is)

t=1

m
+ E Xii D1(icdy -+ G Bedgg |0 e i ),
P

and hence
buif) = > Di(i,(is)| Gis)rJ)
(is) € B
=1y | D [LanDGlis) |+ xibmor(is)-

()€ @y 1=1 =1

Therefore we obtain B, =(—1)"X -Tr, + X Bp—1.
(5) This follows from (4) and straightforward induction. [

We are ready to prove the first quantum version of the characteristic equation.
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Theorem 2.2. The generic matrix X =(x;;)nxn satisfies the following characteristic
equation:

X' X"+ (D)X T + (1) Tr, =0.

Proof. By Lemma 2.1(5),

n—1
LHS = (Z(—l)"-‘—"x"“ Tr,,_l_k) +(=1)"Try=By—1 — B,y =0. O
k=0

By definition, only when g=1, Tr; become the classical kth trace function of X.
In Theorem 2.2, we use the ordinary powers of X and quantum traces Tr;. Next we
will prove another quantum version of characteristic equation by using ordinary trace
functions #r; and quantum powers of X. Let ¥ =(yi;)uxn be an n xn matrix over
K[GL4(n)]. The g-multiplication of X and Y is defined by

dX 1= (X -V)ipdaxn and (X -Y), =" Xuqupa)-
k=1

It is easy to see that the g-multiplication is generally not associative. The mth g-power
of X is defined as follows:

X'=X and X" = (X ,X™).
As before, we need some notations:

ry= Z D(islis)a
(i) € B
Culi))=(=1)" > Di(i, (is)|/, (is)),
(i) € B

Cm - (Cm(ij))nxn-

The relations between ,X™, C,, and fr,, are the following.

Lemma 2.3. (1) Co=X
(2) Cum :(_l)n_ltrn Lyxn :(_l)n_lDlnxw
(3) Cu=0 for all m > n.
(4) Co=(=1)"Xtrp + (X - Cpy) for all m=1,...,n — 1.
(5) Cn= Y1 o (=" kX" for allm=1,...,n— 1.

Proof. (1)—(3), and (5) can be proved in the same way as those in Lemma 2.1 (see the
proof of Lemma 2.1).
(4) By (P1.2) and (P1.3),

Dy(, (i1, (i) =2xi;D(is i)

m
+3 (i Diliei - ie—ididegs - bl it iy =i,

t=1
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and hence
em(if) = (=1)" > DG, (is)] i (i)
(is) € P
=(=1)"x;; Y DGilis) +(=D"""Y xiigiem—1(iif)-
(is) € ‘pm i1=1

Therefore it follows that G, =(-1)"X tr, + ;(X Cp—y). O
Now we are ready to prove the second quantum version of the characteristic equation.

Theorem 2.4. The generic matrix X =(x;;)axn Satisfies the following characteristic
equation:

an _ an—ltrl + .. + (—l)"_lXtr,,_l + (_1)"Dlnxn :0

Proof. By Lemma 2.3(5)

n—1
LHS = (Z(—l)”‘l—"qx"“rrn_l-k) +(=1)"Dlyxn=Cpoy = Gy =0. O
k=0

By definition, ,X™ =X" when g=1. Hence, if g=1, both quantum characteristic
equations reduce to the classical one.

3. Muir’s formula

Let A={(a;;)nxn» be an n x n matrix over a commutative ring. Muir’s formula states
that

n

DD D PllinD(L - () on 1o () m)=0.

m=0 (i) € B

Here (1---( iy)-+-n) is the complement of (i; - - - i, ) in the set (1,...,n). As in Section
2, P(is|is) (resp. D(1--- (iy)- -n|l--- (iy)- -+ n)) is an m x m principal sub-permanent
(resp. (n — m) X (n — m) principal minor) of 4. In this section we will prove Muir’s
formula for the generic matrix X of the quantum group K[GL,(n)]. As usual we need
some new notations. Denote

On= D, {P(islis)D(l--- (i)---n|1-- (&)---n)

(is) € By, i1 > 1

+

m
Zq_lﬂ(l]"';t"'im,1|i1‘-'?r“imiz)
=1
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% Dl(i,2-~(i;)-'-n|1,2‘-~(fs)--~n)]},

En= > PGli)D(1-- (§)--n|l-- () -n).
(i) € &y

The relations between O, and E, are the following:
Lemma 3.1. (1) E, — O, =D=D(1---n|1---n).

(2) On—IZPZP(1n|1n)
(3) Om:Em+l _‘Om+1 for allm:l’...’n_z.

Proof. We will use (P1.2) and (P1.3) and the following versions of the Laplace ex-
pansion:

Du(i, (i5) 1, (is ) =2x:;D(is| is)
+ D (= qu i Dricd - frmaiegr -+l fodr - b Brdgr ),
t=1

Pe((is), il (i) j) = Pis|is)xiy

m
+ E T2 (/KRR 7NY 71 7y St | MU PRI /)RR IR #4735 3
=1

(1)
" n
EI_OI = ZXHD(I-.-Z-.-HII-.-l-.-n)—Z{x”D(l...l-.-n|1...l...n)
i=1 i
+(]_1X1,‘Dl(i2'--2---n|1,2...;...n)}
n
=xllD(z"'n|2‘"n)+Z(_Qil)xliDl(iz'";---n|1,2--.f...n)
i=2
:D(l...n|1...n):D'
(2)

P=P@2 --nl2--n1)

i=2

= Un—1-

(3) Follows by direct and tedious computations. Details are left to the reader. [

We are now ready to prove Muir’s formula for the quantum generic matrix X.
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Theorem 3.2. Let X =(x;j)uxn be the generic matrix of K[GLy(n)]. The following
equation holds:

D" YT PGli)DO - () -n|1---(6) -+ m) =0,
=0 (is) € B

Proof. By Lemma 3.1(3), E, =0, + Oy for m=2,...,n — 1. Hence

n—1
> (=D)"En =01+ (=1)""' 01 =E; — D+ (=1)""'P.

m=2

Therefore D + 3"_" (=1)"Ey, + (—=1)"P =0, or equivalently, 3" _ (=1)"E,=0. O

In general, P(is|i;) and D(1---(4;)---n|1---(&)---n) do not commute with each
other since K[GL,(n)] is not a commutative ring. However we can similarly prove the
following Muir’s formula.

STED" YT D) enl - () - m)P(lis) =0.
m=0 (is) € By

4. Some remarks

Remark 4.1. In general, X"~/ Tr; # Tr; X"~/ and
X' —TrnX" '+ 4+ (1)1 Try - X+ (=1)"Tr, # 0.
Similarly, ( X"~/ or! # tr] X"~ and
X —trig X'+ (=1)" tre X 4 DIyxn # 0.
But the following two equations hold:
XY = Tn(X)" ™+ + (=) Tr X+ (—1)"Tr, =0,
@Yy — XYy o 4 (=15 X7+ Dl =0,

Here X* is the transpose matrix of X and (X ‘)"] is another kind of /th g-power of X".

Remark 4.2. All theorems in this paper hold for the multiparameter quantization of
GL(n) (for a definition see [2]). The left and right quantum minors as well as the left
and right sub-permanents are defined in a similar way. Both quantum versions of the
Cayley—Hamilton theorem and Muir’s formula hold for the generic matrix X = (x;;)nxn
of the multiparameter quantization of GL(n).

Remark 4.3. To prove the Cayley—Hamilton theorem and Muir’s formula, only half
of the relations are needed. For example, we consider the algebra K {(x;;)/(r;), where
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(r4) is the relation ideal generated by the following relations:
XiXis — qx;sx; =0 forall s <¢and i,
XitXjs + qXjiXis — GXisXj; — qzxjsx” =0 foralli<jands <t

These relations span a subspace of R, with dimension %nz(n2 — 1), where R, is the
relation vector space for the quantum semigroup K[M,(n)]. Recall that dimR, =
In*(n* — 1). Both quantum versions of the Cayley—Hamilton theorem and Muir’s for-
mula hold for the generic matrix X of K (x;;)/(r).
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